Pages

Monday, 17 September 2012

Scalar mathematics with MATLAB notations

Scalar mathematics involves operations on single-valued variables. Matlab provides support for scalar mathematics similar to that provided by a calculator.

Arithmetic Operation with Scalars
The symbols of arithmetic operations are:
Table: Arithmetic Operators
Operation MATLAB Symbol Algebraic
form
Matlab
form
Example
Addition + a + b a + b 7+3=10
Subtraction - a b a – b 7-3=4
Multiplication * a × b a * b 7*3=21
Left-division \ b ÷ a a \ b 7\3=0.4286
Right-division / a ÷ b a / b 7/3=2.33
Exponentiation ^ ab a ^ b 7^3 (means 7^3= 343)

Order of Precedence
MATLAB executes the calculations according to the order of precedence displayed below. This order is the same as used in most calculators.
Table: Order of Precedence
Precedence Mathematical Operation
First Parenthess. For nested parenthess, the innermost are executed first.
Second Exponentiation.
Third Multiplication, division (Equal precedence).
Fourth Addition and subtraction

Numeric Display Formats
MATLAB by default displays only 4 decimals in the result of the calculations, However, MATLAB does numerical calculations in double precision, which is 15 digits.

Table: Display Format
Command Description Example


format short

Fixed-point with 4 decimal digits for:
0.001≤number≤1000 Otherwise display format short e
>> x=250/7;
>> format short
>> x
x =
35.7143





format long

Fixed-point with 15 decimal digits for:
0.001≤number≤100
Otherwise display format long e

>> x=250/7;
>> format long
>> x
x =
35.714285714285715





format short e

Scientific notation with 4 decimal digits. >> x=250/7;
>> format short e
>> x
x =
3.5714e+001





format long e

Scientific notation with 15 decimal digits. >> x=250/7;
>> format long e
>> x
x =
3.571428571428572e+001





format short g

Best of 5-digit fixed or floating point. >> x=250/7;
>> format short g
>> x
x =
35.714





format long g

Best of 15-digit fixed or floating point. >> x=250/7;
>> format long g
>> x
x = 35.7142857142857




format bank

Two decimal digits. >> x=250/7;
>> format bank
>> x
x =
35.71



format compact Suppresses many of the blank lines that appear in the output.
format loose Adds empty lines (opposite of compact)

Note: If the largest element of a matrix is larger than 103 or smaller than 10-3, MATLAB applies a common scale factor for the short and long formats.
Elementary Math Built-in Function
Lists of some commonly used elementary MATLAB mathematical built-in functions are given in TABLES.

Table: Elementary Math Functions
Function Description Example
sqrt(x) Square root; x. >> sqrt(81)
ans =
9

exp(x) Exponential; ex. >> exp(3)
ans =
20.0855

log(x) Natural logarithm; ln(x). >> log(200)
ans =
5.2983

log10(x) Common (base 10) logarithm; log(x)= log10(x). >> log10(400)
ans =
2.6021

abs(x) Absolute value. >> abs(-27)
ans =
27

factorial (x) The factorial function x!
(x must be a positive integer.)
>> factorial(4)
ans =
24


Trigonometric Math Functions:
Table : Trigonometric Math Functions
Function Description Example
sin(x) Sine; sin(x).
(x in radians)
>> sin(pi/6)
ans =
0.5000

cos(x) Cosine; cos(x).
(x in radians)
>> cos(pi/6)
ans =
0.8660

tan(x) Tangent; tan(x).
(x in radians)
>> tan(pi/6)
ans =
0.5774

cot(x) Cotangent; cot(x).
(x in radians)
>> cot(pi/6)
ans =
1.7321

sec(x) Secant; sec(x).
(x in radians)
>> sec(pi/6)
ans =
1.1547

csc(x) Cosecant; csc(x).
(x in radians)
>> csc(pi/6)
ans =
2.0000

asin(x) Inverse sine; sin–1 (x). >> asin(1)
ans =
1.5708

acos(x) Inverse cosine; cos–1 (x). >> acos(.5)
ans =
1.0472

atan(x) Inverse tangent; tan –1 (x). >> atan(.5)
ans =
0.4636

acot(x) Inverse cotangent; cot –1(x). >> acot(.5)
ans =
1.1071

asec(x) Inverse secant; sec –1 (x). >> asec(.5)
ans =
0 + 1.3170i

acsc(x) Inverse cosecant; csc –1 (x). >> acsc(.2)
ans =
1.5708 - 2.2924i


NOTE: Trigonometric functions are sind(x), cosd(x), tand(x) and others, in which x is in degree.
Table: Hyperbolic Functions
Function Description
cosh(x) Hyperbolic cosine; cosh(x).
coth(x) Hyperbolic cotangent; cosh(x)/sinh(x).
csch(x) Hyperbolic cosecant; 1/sinh(x).
sech(x) Hyperbolic secant; 1/cosh(x).
sinh(x) Hyperbolic sine; sinh(x).
tanh(x) Hyperbolic tangent; sinh(x)/cosh(x).

Rounding Functions
Table: Rounding Functions
Function Description Example
Round(x) Rounds towards the nearest integer. >> round(17/3)
ans =
6

fix(x) Rounds to the nearest integer toward zero. >> fix(13/5)
ans =
2

ceil(x) Rounds to the nearest integer toward +∞. >> ceil(9/5)
ans =
2

floor(x) Rounds to the nearest integer toward - ∞. >> floor(-9/5)
ans =
-2

sign(x) Signum function. Returns 1 if x>0, -1 if x<0, and 0 if x=0. >> sign(7)
ans =
1

rem(x,y) Returns the remainder after x is divided by y. >> rem(9,5)
ans =
4























No comments:

Post a Comment